

LA-UR-14-28460

Approved for public release; distribution is unlimited.

Title: Evaluated 239Pu prompt fission neutron spectra and associated

covariances for thermal to 30 MeV incident neutron energies

Author(s): Neudecker, Denise

Intended for: Nuclear Data Meetings at BNL: CSEWG/CIELO meeting, 2014-11-03 (Upton,

New York, United States)

Issued: 2014-10-30

Evaluated ²³⁹Pu prompt fission neutron spectra and associated covariances for thermal to 30 MeV incident neutron energies

Denise Neudecker CSEWG/CIELO meeting 2014, 11/4

In collaboration with/ thanks to:

- +) T-2, LANL: P. Talou, T. Kawano, A.C. Kahler
- +) P-27, LANL: T.N. Taddeucci, R.C. Haight, H.-Y. Lee
- +) X, LANL: M. Rising, M.C. White, J. Lestone
- +) ANL: D.L. Smith
- +) IAEA Vienna: R. Capote

MAIN AIM

Evaluation of the ²³⁹Pu prompt fission neutron spectrum for E_{inc} = thermal – 30 MeV:

- → Including improved theoretical information taking into account expected physics processes
- → Including new experiments & detailed experimental UQ
- → Right now, benchmarking ongoing

The evaluated results take into account physics processes.

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

First Chance Fission

UNCLASSIFIED

____ EST.1943 _____

E_{inc} ≤ 5 MeV

The evaluated results take into account physics processes.

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

UNCLASSIFIED

Slide 4

E_{inc} ≥ 5 MeV

The evaluated results take into account physics processes.

The Los Alamos model and the exciton model are used.

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

The exciton model is used for the preequilibrium component.

Slide 6

The LAM PFNS are a weighted sum of average light and heavy fission fragment PFNS.

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

First Chance Fission

Time

We extended the LAM by:

→ *Anisotropy* in the neutron emission in the cms frame (parameter *b*)

$$\rightarrow \overline{v_{1L}} \neq \overline{v_{1H}}$$
 and $T_{mL} \neq T_{mH}$

→ Temperature distribution by Hambsch (parameter s).

UNCLASSIFIED

We extended the original LAM and considered **E**_{inc}-dependent of processes involved:

→ Multi-chance fission considered.

Processes → **Pre-equilibrium component** considered.

> → E_{inc}-dependent parametrization of <TKE> and <E_z> of Lestone and Madland used.

parameters fitted to reproduce ENDF/B-VI.0

Fission barrier fission probabilities.

Physics

Theory

Results

Experiment

Benchmarks

Summary

UNCLASS

The experimental data base:

Slide 9

Experimental Uncertainties are estimated in detail.

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

- → Experimental uncertainties were estimated by partitioning into partial unc. sources.
- → Correlation matrices were estimated for partial unc.
- → Correlations between two different experiments were estimated in the same way.

UNCLASSIFIED

Slide 10

Selected results:

Selected results:

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

We provide evaluated covariances for all incident neutron energies.

UNCLASSIFIED

Selected results:

Selected benchmark results of Mike Rising using a similar evaluation:

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

More in talk of A.C. Kahler.

UNCLASSIFIED

Slide 14

To-Do:

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

- → Study differential data of A. Smith recently recovered by the IAEA
- → *Adjustment of data* using benchmark data. (e.g., ²³⁹Pu(n,2n)/²³⁹Pu(n,f) and ²⁴¹Am(n,2n)/²³⁹Pu(n,f))
- → Further benchmark tests.

Summary:

Physics Processes

Theory

Experiment

Results

Benchmarks

Summary

Evaluation of the 239 Pu prompt fission neutron spectrum for $E_{inc} = thermal - 30 MeV$:

- → Including improved theoretical information taking into account expected physics processes
- → Including new experiments & detailed experimental UQ
- → Right now, benchmarking ongoing

CW2014 conference proceeding will appear in Nuclear Data Sheets 123, January 2015

Backup: All results I

Backup: All results II

Backup: All results III

Backup: All results IV

Backup: All results V

Backup: All results VI

Backup: All results VII

